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Quantum Poincar6 group related to the K-Poincarl algebra 

s Zalaewski 
Depanment of Mathematical Methods in Physics, University of Warsaw. H o b  74, 
00-682 Warsaw, Poland 

Reeeived 1 November 1993 

Abshnct. The classical r-matrix implied by the quantnm & - P o i n d  algebra of Lulderski 
Nowicki and Ruegg is used to generate a Poisson shuctwe on the Poincad group. A quantum 
deformation of the P o i n d  p u p  (on the Hopf *-algebra level) is obtained by a trivial 
quantization. 

1. Introduction 

The theory of quantum groups [ I 4  offers a framework for new types of physical 
symmetries. From this point of view, a study of quantum deformations of the Poincad 
group is one of the first steps to test the (intriguing, but still problematic) applicability of 
quantum groups to fundamental symmetries. 

The ‘phase diagram’ of possible quantum deformations of the Poincad group in four 
dimensions is not yet known (it is known in two dimensions [SI, and also in the case 
of the Lorentz group [6]) .  Although the existence of several families of deformations is 
expected (we already know a six-parameter family of so-called ‘soft deformations’ [7, SI), 
the problem has not been sufficiently investigated and, strictly speaking, no such deformation 
can he found in the literature (in [9] the Poincar6 group enlarged by dilatations is studied). 

On the level of quantized universal enveloping algebras, there is only one example in the 
literature, known as the K-Poincar.5 algebra [lo, 111, which was obtained by a contraction 
of Uq(0(3, 2)) (an example with dilatations is given in [IZ]). 

In this paper we construct an example of a quantum deformation of the P o i n d  group 
(on the Hopf *-algebra level). Our procedure consists of two steps. In section 2 we construct 
an example of a Poisson Poincar6 group using a particular classical r-matrix. In section 3 
we replace the Poisson brackets by commutators (this trivial method works in this case!) 
and obtain a Hopf *-algebra. There is also a quantum Minkowski space on which the 
quantum Poincar6 group acts. 

The source (the whole information) for this deformation is the classical r-matrix, a rather 
simple object (equation (7) below). We have deduced this r-matzix from the cocommutator 
(or ‘cobracket’, see [l]) implied by the K-Poincark algebra (cf section 4). Therefore we 
expect our example of a quantum Poincark group to play the role of the dual of the K- 

Poincar6 algebra We did not attempt to make this point more rigorous (this would require 
long and tedious calculations). Instead, we present the dual Poisson group of our Poisson 
Poincar.5 group (section 5). It turns out that this dual Poisson group is described by the 
same equations as the K-Poincar6 algebra, with commutators replaced by Poisson brackets 
(multiplied by the imaginary unit). This shows that the K-Poincark algebra is obtained by a 
trivial quantization from this dual Poisson group and supports our conjecture about quantum 
duality. 

0305470/94/062075+08$19.50 @ 1994 IOP Publishing Ltd 2075 
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The theory of Poisson Lie groups (which we call Poisson groups) was developed in 
[l, 13-15]). The classification of Poisson structures on a given Lie group is the same as the 
classification of quanhm deformations of the group in all known cases (e.g. see a recent 
comparison [16] for the Lorentz group). We hope to return to the classification of all Poisson 
structures on the Poincar6 group in another paper. 

2. An example of the Poisson Poincar6 group 

We denote by G the Poincad group in four dimensions, identified here as the p u p  of 
matrices 

where A = (A:) belongs to the Lorentz group and U = (U’) E R4 (p,  U = 0,1,2,3). 
Commutators of standard generators Mi, Li ( i  = 1,2,3), P’ (p  = 0,1,2,3) of the Lie 
algebra g of G are given by 

(using the summation convention), where ~ i j k  (i. j ,  k = 1,2,3) is the totally anti-symmetric 
symbol such that EIZ = 1. If we denote by e, (a = 0,1,2,3,4) the standard basis in W5 
and by eab :=e. 63 eb the standard basis in End(R5) (eb is the dual basis of ea), then 

M; = &ij.&j Li = eo’ + et0 P’ = ek4 (6) 

where i, j , k  = 1,2,3 and p =O,  1,2,3. 
Now consider r E A2g given as follows (cf section 4): 

(h is a real deformation parameter). A calculation of the Schouten bracket [I, 13-15] of r 
with itself yields 

3 
[r. r ]  = 2hr A Po - hZ E i j k P i  A Pj A Mk. 

i.j.k=l 

It is not difficult to see that [r, r ]  is invariant, hence r defines a struckre of a Poisson Lie 
group on G. The Poisson bivector 71 on G c End(R5) is given by n ( g )  = gr - rg, i.e. 
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for the left and right (we have used the equations geab = E, g“.e/ and eabg = E, 
translations, applied to r = E:=,(e$ + exo) A ek4). Taking into account 

g o - L ? 1 - L ? 2 - . z 3 -  

with p. U < 3, we obtain 

g44 = 1 g’, = A”, g”4 Up (10) 4 - 4 - 4 - 4 - 0  

3 3 3  

k=l -0 k l  
x(g)  = h Ukek4 A eo4 + h ~ ( A P o e p k  + A’ke,O)IiOk A eo4 

3 3 

+ h c [ - (A”oeoo 4- A0oeno) - E(l\”keok + Aokenk) 
“=I k l  

3 3  
4- c c ( A J ’ O e p k  + h”kepO)l\”k A en4. 1 p=O k=1 

This enables us to calculate the Poisson brackets of the coordinate functions on G 

(p, U, A,  p = 0 , 1 , 2 , 3 ;  k ,  j = 1.2.3).  Equations (14)-(18) may be also written in a 
compact form 

[A””, U’] = h[(A”o - S”o)Apv + ~ l ’ l ~ ( A ~ ,  -So,)) (19) 

where q = diag(1, - 1 ,  - 1 ,  - 1 ) .  Also (12), (13) may be written as one equation 

(U“. U#] = h(ua6@0 - u@Sao). (20) 

Let t, be the Lie algebra defined by these relations (t, is’spanned by ua). From (19). to each 
X E fJ there corresponds a vector field 2 on the Lorentz group L such that 

B(A”,) = {X, A”,]. (21) 

By the Jacobi identity, X n 2 defines an (infinitesimal) action of fJ on L. It is clear that 
the Poisson structure on G is encoded in this action. The Poisson structure is in fact the 
semidirect Poisson structure L x If’ (cf [17]). 
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3. The quantum Poinear6 group 

Let A be the universal *-algebra with unity, generated by self-adjoint elements AN,, up 

( p ,  U = 0, 1,2,3), subject to the relations 

[Ap,,  AAp] = 0 (22) 

[Ap,, up] = ih{(APo - #"')Ap, f q'(Aov -6'")) (24) 

[U", us] - uBSUo) (23) 

A @ ~ A ~ ~ $ ~  = p .  (25) 

These relations arise from (11). (19) and (20) by replacing Poisson brackets by commutators 
divided by the imaginary unit. This procedure is unambiguous: there is no ordering 
ambiguity when 'quantizing' the right-hand side of (19). due to the commutativity in (11). 
One can show that the spaces of polynomials of a given degree in variables Ap", up have 
the same dimension as in the non-deformed case (h = 0), i.e. the algebra A has a 'proper 
size' and can be regarded as a deformation of the algebra of polynomials on the Poincar6 
group. Moreover, since the standard comultiplication A is compatible with Poisson brackets 
(Il), (19) and ( Z O ) ,  it is also compatible with the defining relations (22)-(25). Indeed, the 
expressions for Poisson brackets coincide with the expressions for commutators and the 
calculation of the compatibility conditions look identical in both cases. We conclude that 
the above relations together with the standard comultiplication 

AApv = A', @ Apv Aup = Apu @U' -k up @ I (26) 

define a Hopf *-algebra. The antipode is given by the familiar equation 

S(AP,) = S(up) = -(h-')p,~Y (27) 

where (A-')p, = q N P A A P q v ~  is the usual inverse matrix of A. 

the following R-matrix form 
One can check (see also proposition 1 below) that relations (22H25) can be written in 

(28) RabCdgcegdf = g b d g  n cR cd ef A",AAp,17vP = V p h  

where R = e" = I + ir and it is assumed that gab are of the form (IO). The R-matrix 
satisfies the 'unitarity condition': PRP = sPrp = e-ir = R-' (here P is the permutation 
in the tensor product), but R does not satisfy the Yang-Baxter equation (because r does 
not satisfy the classical Yang-Baxter equation, cf (8)). The following result tells that the 
Yang-Baxter equation also does not hold for other possible choices of the R-matrix. 

Proposition 1. A ma&x R satisfies the first equation in (28) if and only if 

R = te" +sP 

where t and s are some numbers. R satisfies the Yang-Baxter equation only in the trivial 
case t = 0. 
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Proof. The first part of the proposition follows by a straightforward (lengthy) calculation, 
taking into account (10) and the defining relations for A. Checking the Yang-Baxter 
equation 

RizRnRz  = RuRi3Riz 

for R with t # 0, we can assume t = 1 and R = I + ir + s'P. Denoting e, @ e" @ e, 
concisely by Ipup), we have 

R12RisRz1012) = 1012) fs(1021) + 1102) + 1210)) +s2(21120) + 1201)) +s31Z10) 

RuRi3R121012) = 1012) fs(1021) + 1102) + 1210)) +sZ(1120) +21201)) + s31Z10) 

hence the Ymg-Baxter equation would imply s = 0. To obtain the above equalities, note 
0 

Let B denote the universal *-algebra with unity, generated by self-adjoint elements x@ 

that rlpup) = 0 for (p ,  U, p )  being any permutation of (0,l.Z) (use (7), (6)). 

(p  = 0,1,2,3), subject to the relations 

[xk ,  xi] = 0 [xk ,  xO]  = ihx' 

(j, k = 1,2,3). It is easily seen that the usual equation 

Ao(x') = A', @ x u  + up @ I 

defines a unital *-homomorphism from U to A @ B. This represents the action of the 
quantum Po incd  group on the quantum Minkowski space associated with the algebra B. 

4. The tc-Poincari algebra and its quasi-classical limit 

In [lo, 1 I], a quantized universal enveloping algebra in the sense of Drinfeld [l], describing 
a deformation of the Poiwar6 Lie algebra has been introduced in the form 

[Mi, Mj] = iqj'Mk [P,, P"l = 0 

[Li, Mj] = ieijkLk 

[Mi,  Pjl = ieijkPk [Mi I Pol = 0 

Po [Li ,  Pj] = k&jsinh - [Li,  Po] = iPi 
K 

Here h := 1 / ~  should be interpreted as the deformation parameter and Mi, Lt, 
i = 1,2,3 and Pp, p = 0,1 ,2 ,3  are (as in section 2) the standard generators: rotational 
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momenta, boosts and translational momenta. These quantities are self-adjoint, Mi* = Mi, 
Lf = Li and P; = Pw. The comultiplication is defined as 

A(Mi) =Mi 8 1 + 1 8  Mi 

A&) = Lj Q exp (2) + exp ( - $) 8 LI 

A(PJ = Pi Q exp (2) + exp (- 2) @ pi A(P~)  = p0 1 + 1 8 p0. 

Let us denote thii quantized universal enveloping algebra by &(e), where g stands for 
the Poincark Lie algebra. The quasi-classical limit of U&) is the Lie bialgebra (g, S), where 
the cocommutator 6: g --f A2 g (obtained as (A - CT o A) mod h2, U is the permutation in 
the tensor product) is given by 

It is easy to see that 6 is a coboundary, i.e. there exists an element of r E AZ g such that 
6 := ar (that means that S(X) = adxr for X E 8). Equation (7) gives a solution to this 
problem. 

5. Poisson dual of the Poisson Poincar6 group 

If we rescale the generators of the K-PoincarL algebra 

1 
A 

Li H -Li 1 
A 

Mi H -Mi 

(Pw unchanged), we obtain the following commutation relations 

[Mi ,  Mjl = iA~ij~Mk 

[Mi. e] = iAEijkq 

[P@. P”l = 0 

[Lf, Mj] = ihEijkLk 

[Mi, Pol = 0 

with the equations for comultiplication unchanged. In this way we .have embedded the 
K-Poincar6 algebra into a one-parameter family of Hopf *-algebras (the difficulty with 
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non-polynomial functions of PO can be avoided in a standard manner by replacing PO 
by K* := exp(*PO/k)). We interpret these Hopf *-algebras (and in particular the K -  

Poincar€. algebra) as the algebras of functions on some quantum groups. The quantum 
group corresponding to A = 0 turns out to be a classical group (because the algebra of 
functions becomes commutative for A = 0). Let us denote this group by G’. It is known 
that linearizing the defining relations at the value of the parameter corresponding to the 
claSsical group yields a Poisson structure on this group. The group equipped with this 
structure then becomes a Poisson group. In our case, the Poisson shwture is given simply 
by 

One can of course check directly that the group G’, whose multiplication law is defined by 
comultiplication equations from the previous section, is indeed a Poisson group with respect 
to the above Poisson structure. It is easy to see that the Poisson group G* is exactly the 
dual Poisson group of the Poisson Poincark group presented in section 2. To this end it is 
sufficient to show that the tangent Lie bialgebra of G* is dual to the tangent Lie bialgebra 
of the Poisson Poincard group. This is indeed so, because, on one hand, the linearization of 
the above Poisson structure at the group unit leads to linear Poisson brackets on g* which 
coincide (dually) with equations ( I x 5 ) ,  and on the other hand, the Lie bracket on g* 
computed from the group law in G*, has as the dual map the cobracket given in equations 
(29x31). 

We conclude that the presentation of our Poisson P o i n d  group and its (Poisson) 
dual looks exactly the same as the presentation of the quantum Poincard group described 
in section 3 and the K-Poincard algebra, except that the Poisson brackets are replaced by 
commutators (divided by the imaginary unit). This suggests that the duality should also 
hold on the quantum level. 

Finally, let us note, that the K-Poincard algebra is obtained from the Poisson dual to our 
Poisson Poincard group by a simple quantization procedure: replacing Poisson brackets by 
commutators. 
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